
RO-AOBI 531 NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CALIF F/G 20/4
DEVELOPMENT OF PERTURBATION PROCEDURES FOR NONLINEAR INVISCID A--ETC(U)
JAN 80 D NIXON F4%920-79-C-0054

UNCLASSIFIED NEAR-TR-214 AFOSR-TR-80-0129 PG.12.fffffffffff



flj8 1.0.5
-o MM'

11- 113 2.

MICCPYRESOLUTION TEST CHART



t p03-1. BG0129-

LEVWL

s3 010
-dIv. for Public relears;L. 4 ltz'but Ion WIIted.

I:
o

NIELSEN ENGINEERIN* mdAND RESEARCH, INC.

OFfIeES: 510 CLYDE AVENUE /MOUNTAIN VIEW, CALIFORNIA 94043 / TELEPHONE, (415) 689457



_ ,NCLASSIFIED
SECURI,'Y CLA.SIFICATION OF THIS PAGE (Wh7en Date Entered) A-I

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I.EORTBRa 8 .£9v2OVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER j
4. TITLE (and Subtitle) , 5. TYPE OF REPORT & PERIOD COVERED

INTERIM
01 Apr 79-30 Sep 79

DEVELOPMENT OF PERTURBATION PROCEDURES FOR 6 PERFORMING ORG. REPORT NUMBER
NONLINEAR INVISCID AN[) VISCOUS FLOWS NEAR TR 214 '

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(@)

DAVID NIXON F49620-79-C-0054

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
NIELSEN ENGINEERING & RESEARCH, INCV AREA & WORK UNIT NUMBERS

LI~, N~Eara' & ESEACH, NC.61102F
510 CLYDE AVENUE

e- MOUNTAIN VIEW, CALIFORNIA 94043 2307A1
SII. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA JANUARY 1980

BLDG 410 13. NUMBER OF PAGES
BOLLING AIR FORCE BASE, 1) C 20332 103

14 MONITORING AGENCY NAME 8 ADORESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

aUNCLASSIFIED
I5s. DECLASSIFICATION, DOWNGRADING

s" .SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

a

1. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

::.'4RANSONIC FLOW
i ERTURBATION METHODS

20. -ABSTRACT (Cotlnue on reverse side If nece.vsary and Identify hr block n.tmtr)

.tihe perturbation theory for transonic flow is further developed for two and
-Three dimensional problems. The physical perturbation theory, in which the per-
turbation parameter is a physical quantity, is applied to solutions of the
Nqvier-Stokes equations in two dimensions. The mathematical perturbation theory,

• which the perturbation parameter is a measure of the difference between
:a.proximate and exact solutions, is applied both to the three dimensional poten-
tial flow problems and to tie two dimensional Navier Stokes equations. The

strained ccordinate technique is used to treat ( hangts in Ifation, any ock



S

- :7 (,F ': :% :. --' - -:

, ciii.c al tln O1 At O f l icer

TECHNICAL REPORT

DEVELOPMENT OF PERTURBATION .ROCEDURES
FOR NONLINEAR INVISCID AND

VISCOUS- FLOWS.

_. by
40 4

/V David/Nixon C

-----" "Y" '' " /:( -"' ' /

- NEAR-TR--2Z4

... ........ ......... ....

/ . ..... ...Approv ;

Prepared under Contract No. F49620-79-C-0054

for -I .

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling Air Force Base
Washington, DC 20332 1 ,/

by

NIELSEN ENGINEERING A RESEARCH, INC.
510 Clyde Avenue, Mountain View, CA 94043

Telephone (415) 968-9457

)' ; / ' -



TABLE OF CONTENTS

Page

Section No.

1. INTRODUCTION 1

2. BASIC PRINCIPLES OF THE PERTURBATION THEORY 4

2.1 General Concepts 4

2.2 The Strained Coordinate Method 10

3. APPLICATION OF THE STRAINED COORDINATE SYSTEM TO
THE NAVIER-STOKES EQUATIONS 13

3.1 Theory for the Navier-Stokes Equations 13

3.2 Discussion of Results 16

4. THE CORRECTION THEORY FOR NUMERICAL CALCULATIONS 17

5. CORRECTION PROCEDURES OF THE TRANSONIC SMALL-
DISTURBANCE THEORY 21

5.1 Theory

5.2 Discussion of Results 26

6. THE CORRECTION THEORY IN THREE-DIMENSIONS 29

6.1 General Comments 29

6.2 Discussion of Results 31

7. CONCLUDING REMARKS 33

REFERENCES 34

TABLE 1 36

FIGURES 1 THROUGH 25 37
APPENDIX A - OBSERVATIONS ON THE STRAINED COORDINATE -

METHOD FOR TRANSONIC FLOW / : o1 .

APPENDIX B - COMMENTS ON THE EXISTENCE OF A "NEAR-BY" /8 - 9

SOLUTION

APPENDIC C - TRANSONIC SMALL DISTURBANCE THEORY WITH>??co
STRONG SHOCK WAVES

iii1



DEVELOPMENT OF PERTURBATION PROCEDURES FOR
NONLINEAR INVISCID AND VISCOUS FLOWS

by David Nixon

ABSTRACT

The perturbation theory for transonic flow is further devel-

oped for two and three dimensional problems. The physical per-

turbation theory, in which the perturbation parameter is a

physical quantity, is applied to solutions of the Navier-Stokes

equations in two dimensions. The mathematical perturbation

theory, in which the perturbation parameter is a measure of the

difference between approximate and exact solutions, is applied

*both to the three-dimensional potential flow problems and to the

*two-dimensional Navier-Stokes equations. The strained coordinate

technique is used to treat changes in location of any shock waves

or large gradients.

1. INTRODUCTION

A series of papers recently published (refs. 1, 2, and 3)

concern the development of a perturbation method for transonic

flow problems. A basic problem in transonic flow perturbations

is the treatment of possible movement of discontinuities (shock

waves) which can make the perturbation invalid. A means of

solving this problem, using a strained coordinate method, has

been derived (ref. 1). The location of the discontinuities in

this strained coordinate system remain the same throughout the

perturbation, leading to a final linear perturbation equation

for the perturbed unknowns. The final solution is not linear

because of the transformation from the strained coordinate system

to the physical coordinate system. However, since the perturba-

tion equation is linear, the principle of superposition can be

I -
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used, and the effect of several different types of perturbations

can be easily, and inexpensively, estimated.

The most common application (ref. 2) of the method has been

concerned with extrapolating transonic flow solutions. For

example, given two transonic flow solutions for the same airfoil

and Mach number, but at two different angles of attack, then the

pressure distribution for any other angle of attack can be found

by simple proportion and the use of the strained coordinate

transformation. Applications of this technique to two-dimen-

sional, multi-parameter flow solutions and to three-dimensional,

multi-shock problems are reported in references 1 and 2. These

examples are concerned with the physical perturbation quantities,

such as angle of attack, profile geometry changes, etc.

More recently the concept of "mathematical perturbations" has

been discussed (ref. 3) in which the perturbation quantities

characterize the difference between solutions of a subset of the

full potential equation, namely the transonic small-disturbance

(or TSD equation), and the potential equation itself. The results

of this type of perturbation solution indicate that such a general

type of correction for various subsets of equations is feasible.

For the present work the perturbation theory is concerned

with solutions of the Navier-Stokes equations. In particular,
three specific problems are investigated. In two dimensions the

application of the physical perturbation theory to the Navier-

Stokes equations is investigated. Also the application of the

mathematical theory to solutions of the transonic small-distur-

bance theory and the Navier-Stokes equations are considered. The

extension of the mathematical perturbation theory to three-dimen-

sional flow is also considered. In all cases the strained

coordinate technique is employed to treat shock waves or rapid

gradients in the solutions.

First consider the physical perturbations of the Navier-

Stokes equations. The first step in deriving a perturbation
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equation is to write the governing equations and their associated

boundary conditions in such a form that only the basic equations

or the boundary conditions contain the perturbation parameter,

otherwise the correct parameter to use may not be obvious. In

the previous work for the TSD equation (ref. 2) the perturbation

parameter is contained only in the boundary conditions. For the

Navier-Stokes equations the perturbation parameter appears only

in the set of equations, if these are written in a general body

conforming curvilinear coordinate system and the variables non-

dimensionalized with respect to free-st-eam quantities. Both

attached flows and flows with shock induced separation are con-

sidered.

The basic physical principle behind the "physical" perturba-

tion theory is that, relative to certain physical features of the

problems, for example the geometric confines of the airfoil and
the shock location, the physical processes throughout the pertur-

bation are in some sense similar. For instance, if two solutions

are known (the base and calibration solutions) and have shock

induced separation then an interpolated solution will also have

shock induced separation. Examples with attached flow and with

separated flow are calculated with satisfactory results. However,

in contrast to the earlier potential equation work1 '2 , it is

found in the present case that the base and calibration solutions

should not be too close, otherwise numerical inaccuracies in the

Navier-Stokes solution can dominate the perturbation quantities.

The second type of perturbation problem considered here is

the mathematical perturbation correction technique. In the pres-

ent case the basic aim is to correct transonic small-disturbance

theory to give results typical of solutions of the Navier-Stokes

equations. As described fully in reference 3, the idea is to

determine a correction between the two types of equations by

considering the numerical results for both equations for some

case. This correction is then applied to the TSD solution of

other near-by cases. A nearby case is assumed to mean an example
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with a similar pressure distribution to the correction example.

The basic assumptions behind this idea are, firstly, that a flow

is characterized by its surface pressure distribution and,

secondly, that those physical features modeled by the Navier-

Stokes equations and not by the TSD equations (e.g., viscous

effects) for the correction example are also present in the

near-by cases. To a large extent the validity of the assumption

is to be determined by numerical experiment.

A basic feature of all perturbation methods is that the

perturbation variables and their derivatives are of the same

order of magnitude. In the course of investigation of the cor-

rection technique it was found that the shock movement due to a

change in some parameter, e.g., angle of attack, was much greater

for the TSD equation than for either Navier-Stokes equations or

the Euler equation. This is due to the larger shock strength

associated with the TSD equation. Consequently an additional

perturbation, within the confines of small-disturbance theory,

is added such that the difference in shock strength between,

say, the Euler and TSD equations is the same as for the correction

case.

The third part of the present work is the extension of the

mathematical perturbation correction technique (ref. 3) for

inviscid three-dimensional flow. To a large extent this is a

straightforward development of the work reported in reference 3.

Both corrections for grid size, the use of the transonic small-

disturbance equation, and a combination of both are investigated.

2. BASIC PRINCIPLES OF THE PERTURBATION THEORY

2.1 General Concepts

It is usually assumed in perturbation theory that the form

of the perturbation parameter characterizing the disturbance is

known or can be easily found. For example, in the earlier work

)L
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(refs. 1 and 2) on the perturbation theory, the transonic small-

disturbance equation was written in an invariant form and the

'natural" perturbation parameters were easily discernible from

a study of the boundary conditions. An example of such a

"natural" parameter is that, for changes in Mach number, M.,

the parameter is

(1 -moo)

where "A" denotes an increment. One problem that arose in pre-

vious work (ref. 4) was to determine the precise nature of a Mach

number perturbation for the full potential equation, since this

equation cannot be written in a Mach number invariant form. In

practice, the small-disturbance perturbation parameter, given

above, was used for Mach number variations.

In the present work, the strained coordinate perturbation

theory is to be extended to treat the Navier-Stokes equations.

It is unlikely that these equations can be written in a form

independent of the freestream conditions and consequently, aF

in the case of the earlier full potential equation problems,

the choice of the "natural" perturbation parameter for a pertur-

bation in freestream quantities may not be obvious. Accordingly,

it is proposed to write the Navier-Stokes equations in a form

where the boundary conditions are invariant, and then examine the

transformed equations to determine the correct choice of pertur-

bation parameters. A further simplification is to use the thin-

layer (ref. 5) approximation to the Navier-Stokes equations.

This letter assumption is consistent, since these are the equi-

valent equations solved in most computer codes, whether explicitly

coded or not.

The steady thin-layer Navier-Stokes equations for two dimen-

sions can be written (ref. 6) in a general curvilinear coordinate

system as

!
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3E +F R- 1aS-+- =Re - (1)

where Re is the Reynolds number, ( ,n) are the computational

coordinates which are functions of Cartesian coordinates (x,y)
with a transformation Jacobian J, given by

= y - Ty x = / (x Yn  - xny ) (2)

The transformation metrics are given by

x = Jy ix = -JYE
(3)

Ey = -Jxn  qy = Jx

The vectors E, F, S are defined as follows:

PU PV

-I puO + xp  P uV + T)xp (4E =J pu pF = pu lp(4)

PvU + yp yvV + nyp

(pe + p)U (pe + p)V

and
0

I 2 ( + n2 )u + R nv(nxun V

S J i n + Tj )v + R +(nxU nv) (5)x y n 3yXT
K-l1 (Y-l)-'(n 2 2 ) (a2) + E (uI2 +V2
r(Y-) (nx+) an 2 x x TI

+ R (rxU + nyV) (TnIU + nyV

where U,V are contravariant velocities related to the Cartesian

velocities u,v by

U = xu  + Ey V( 
)~ u+ (6)

V xu + yV



p, p, e are the density, pressure and internal energy, respec-

tively. Pr is the Prandtl number, K is the conductivity, and a

is the speed of sound of the gas. The pressure is related to

e, p, u, v by

1 2 2
p = (Y-l) pe - -p(u + v 2 ) (7)

where Y is the ratio of specific heats.

The computational coordinates F,n are chosen such that the
surface n(x,y) = 0 represents the body surface. The boundary

conditions are the tangency and no-slip conditions and there-

fore,

V= 0
(8)

U= 0 on n =0

The far-field boundary conditions are that free-stream conditions,

denoted by the subscript -, prevail.

If the reference quantities are taken to be free-stream

conditions, then the basic equations, eq. (1), can be nondimen-

sionalized to give

+ -= R1 (9)a ari e nI

where

E =J -I (10a)

(pe + p(Y-l)]U

i
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pV

PUv + n ~2(lb
F=C (10b)

P + n 1 Y

Co

[P + P(Y-1)]V

0

P2 ( 2I + IL +~ (~u+j lcx ( u + n x u n+ y v

P+T n2- n y n u + n 1(10c)

12 + y Y)M2 2 2 -2 -2

Kpi r Y x + ny an 2 00 x y u 2

+ R Y(Y-1)M 2 (nxu + n V) (n U + n v
3 00 x y xr n Y TI

where u = u/u., v = v/u., V = V/U., U = U/U., P = P/Po, p =P/P

e = e/e., a = a/a2 , and use has been made of the perfect gas

equation

p/p RT

and the sonic velocity relation

a2 = YRT

The pressure relation, eq. (7), can be written in the form

-2 +v)M2
p= (Y-l) p-i 2  - 2 (11)

The boundary conditions for the set of equations, eqs. (9),

(10), (11), are the tangency and no-slip conditions, eq. (8),

together with the far-field conditions

p = p= e = = 1 (12) I
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It can be seen then that, with the exception of changes in

M., the basic equation set and its boundary conditions are inde-

pendent of the free-stream conditions. Changes in geometry are

transmitted through the changes in the metrics xy ,nx ny and
the Jacobian J.

The system of equations, eqs. (9)-(11), can be written in

the form

L(p,p,e,u,v,M2 ,m) = 0 (13)

where m denotes the metric terms. Now consider a perturbation

about some state or geometry denoted by a subscript o, and that

the perturbation quantities, denoted by the subscript 1, are

characterized by the parameter . First consider changes in

geometry. An expansion of eq. (13) for m then gives

- - 2LIOp0pe 0 'u 0 01 JM"OmoI
L~p°'°'e°'°'v°' 'm°]- - , -,llM- m] 2(4

Am am +1 1  0 (14)

where L[ I is a linear operator, related to Ll I and which

depends on the zeroth order quantities. It can be seen from

eq. (14) that the natural choice of perturbation parameter is

Am, i.e., the change in the geometry characteristics. If the

general curvilinear coordinate system is related by a set of

linear differential equations to the Cartesian variables, then

Am is simply a change in angle of attack, say, or a change in

thickness ratio. Hence, if two solutions are known for two

cases that differ by a one parameter variation then the solution

for any other value of this parameter can be found by simple

proportion.

A similar analysis to the above but for Mach number varia-

tions indicates that the correct parameter to use for Mach
number changes is AM2 . This is in contrast to the earlier

small-disturbance result in Section 2, above.
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Transonic small-disturbance theory can be regarded as a

subset of the Navier-Stokes equations and a question arises

regarding the relationship of these two different Mach number

perturbation parameters, since for certain flows the small

disturbance theory should be a close approximation to the

Navier-Stokes equations. In the type of interpolation used

in previous work, and also in the present work, the perturba-

tion parameter e appears in a combination, c/6o , where E isS00
some known value of c. In Table 1 the effect of changing the

parameter for different Mach number is shown. Two different

base and calibration Mach numbers (which gives EO ) are used

in the computations, namely 0.8 and 0.83, and 0.8 and 0.85.

It can be seen that, while the values of e for both theories

differ greatly, the ratio E/e for both forms of 6 is in good
agreement. This indicates that the small-disturbance pertur-

bation is not inconsistent with the present work.

2.2 The Strained Coordinate Method

The interpolation procedure outlined above is only valid

for smooth functions. A device for treating discontinuous func-
tions using a strained coordinate system has been derived in

previous papers (refs. 1 and 3) and a brief outline is given

below. Because of the applicability to section 4 of this

report, a more complete version of the idea is given here than

is warranted by the simple interpolation used in this example.

The perturbation method outlined in the previous section

requires that the changes due to the correction are small. In

cases containing discontinuities which can alter location during

the perturbation, the changes are not small in the region

traversed by the discontinuity. A means of treating the prob-

lem of perturbations in discontinuous transonic flow has been

described by Nixon !ref. 1); an outline is given below.
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Briefly, the idea is that the problem is reformulated in a

strained coordinate system in which the discontinuity remains at

the same location throughout the perturbation and hence the dif-

ficulties associated with moving discontinuities do not arise

explicitly. The required straining is then found as part of the

solution. The basic equations in this strained coordinate system

are then perturbed about some known solution to give a linear

equation for the perturbation quantities similar to those dis-

cussed in the previous section. Once the solution of the linear

perturbed equation is known, the total perturbed solution in the

physical coordinates is then obtained. The major restriction is

that the discontinuities must not be lost or generated during

the perturbation.

The technique described above was originally developed to

treat the discontinuities which can invalidate a perturbation

analysis. However, the technique can also be applied to increase

the range of application of a valid perturbation analysis. An

example from transonic airfoil theory concerns the pressure dis-

tribution around an airfoil when shock waves are present; such a

pressure distribution is sketched in figure 1. The solid and

dashed lines denote two nearby solutions for the pressure dis-

tribution. The solution shock waves are captured, that is, the

expected discontinuity is smeared over a few mesh spacings and

denoted by CD and C'D'. The method of strained coordinates, as

given in reference 1, would strain the x-coordinate such that

the midpoints of the shock capture regions CD and C'D' coincide.

The actual details of the shock capture region are not considered

since they are in any event artificial phenomena.

It can be seen from figure 1 that in the leading edge region

the rapid change in the pressure distribution can cause large

pressure changes for a small perturbation if the location of the

pressure rise shifts slightly in the x-direction. This large

effect seriously limits the range of validity of the perturbation

analysis since all pressure changes are assumed small. A method
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of avoiding this difficulty is to strain the coordinates such that

representative point on the AB and A'B' curves coincide. This

then increases the range of validity in a similar way as the

treatment of the shock waves in reference 1.

A further point concerns the treatment of the shock capture

regions CD and C'D'. In the earlier applications (refs. 1 and 2)

of the theory the same mesh and differential equations were used

for computing the pressure distribution in all examples and hence

the shock capture characteristics were essentially the same for

all cases. For other problems, for example, those discussed

later in Section 4, the shock capture characteristics may differ

substantially and it is desirable to correct this behavior.

Accordingly, the coordinates can be strained such that both the

points C,C' and D,D' (the extremities of the shock capture)

coincide. As before, the actual flow details in the region CD

are considered irrelevant because of the artificial nature of

the shock capture.

A more general statement of the above technique is as follows.

1. If a true discontinuity is present, the coordinate

straining is such that the location of the discontinuities

coincide.

2. If there is a shock capturing type of phenomena, then

the straining is such that the extremities of the capture region

coincide.

3. If large gradients are present in the solution, then

the coordinate straining is chosen so that a representative

point in the region of the large gradient coincides.

These conditions constitute perhaps a large number of

requirements for the choice of straining. However, a piecewise

straining is perfectly feasible provided the end points of the

straining (which do not move) lie in regions of the solution

for which a small perturbation analysis is valid, for example,

in the region BC of figure 1.
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3. APPLICATION OF THE STRAINED COORDINATE SYSTEM
TO THE NAVIER-STOKES EQUATIONS

3.1 Theory for the Navier-Stokes Equations

Consider the set of equations, eq. (9).

EC ,n) a+ (r, In) = R-1 ;S(fq) (15)
e aT

Let both the independent variables ( ,n) be strained such that

the location of one or more discontinuities or rapid gradients are

held invariant. The new coordinates are denoted by (,n') where

= F, + C6 l(Y',n') +

(16)

= n' + canl(C',n') +

where c is the perturbation parameter, 6 ,6n are measures of the

movement of the straining points and il(F '', ')' nl ( ,') are

(fairly arbitrary) straining functions.

Now let the dependent variables be expanded in a series in

E. Thus

(,n) + CE('n') +
01

' w2n') + C + (17)

= (9',n') + Co(E',r)') +

Using eqs. (16) and (17) the perturbation equation for eq. (15)

(the coefficient of c) is

'aI El I+ El--+ + o + - Ti1ff +ln a 1~

aRe 1  an - n an' nJ1(nn)
n
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Now since e is not contained in eq. (18) it follows that a solution

to this equation can be applied to any value of c. As in the pre-

vious work (ref. 2) the perturbation equation is not solved,

instead the solution of the perturbation equation is assumed to

be the difference between two complete solutions, differing only

by a perturbation characterized by the parameter eo Hence, for

example, if

- : = , + eo l( 'n '

(19)

. = n ' + l (S', ')

and, if for the velocity component, u(C,n), the two solutions are

denoted by u o( ,) (base solution) and u1 (E,n) (calibration solu-
04

tion, c = 0 ). Then, following the previous work4 ,

0 (20)

UR 0n ( = U0 ) + Cs- [u( )- u0 (t'~)](0

and [I

= ' + £ 6 El(,n) = ' + -c- ( - )
+ E +

0 (21)

n + £ n fl1 (',n') = n' + -L ( - ')
C 0

The coordinates E, are found from eq. (19) by making the strain-

ing points, e.g., C,C' in figure 1, coincide. A similar relation

to eq. (20) applies for all the dependent variables, the most

useful of which is the pressure coefficient Cp (,n). Thus

-L [C (f ,I) - C ( ',q')] (22)
p pO 0o Pl

In the present work only values on the airfoil surface (n = 0) are

considered and only the coordinate is strained. The coordinate

straining function Ei(F',0) is given by the following equation or
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by a piecewise application of the following equation, depending
on the number of straining points required.

0 'x' 1

(,0) 0 1 < x' < 0

This straining relation keeps invariant the leading and trailing

edges and two straining points, A,B.

A further result can be obtained from eq. (22) for the lift
and pitching moment coefficients CLCm. Consider the lift coef-
ficient CL, where

• 1

CL f ACp (,0)dE (23)

0

where C ( ,0) denotes the pressure jump between upper and lower
psurfaces. Using eqs. (19), (21), and (22) the lift coefficient

is then given by

1

CL=f ( Co 0') + - [ACl( 'T) - AC ( 1'0')]
0 P Co Pi P0

"x + (dd d t
C (24)

Now the basis of the perturbation theory implies that

[Cl( ,n)- Cp( ',r')] ~ ( )

Id,- d l' 0 (c)

LA.
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and also that d= d.' + 0(c). Using these results in eq. (24)

it can be shown that

1

CL [AC (,0)dF' + - - AC (C,0) d - -  ACp(E',0)d (25)L f o 0 CE 0 P l E :
0

or

CL CL +- [CLI -CC~o] , (26)
L L0 C0 1 0

where CLo, CL, are the lift coefficients for the base and calibra-

tion solutions, respectively. A similar result applies for the

pitching moment Cm, namely

+-[C -C ]. (27)m m m m
0 0 1 0

3.2 Discussion of Results

The variation of lift coefficient for a Korn airfoil at

M= 0.755, for various angles of attack, is shown in figure 2.

Two separate cases are considered, namely flows with shock waves

and shock free flow. For shocked flow the base and calibration

solutions were taken at a = 1.20 and a = 2.660, and for shock

free flow at a = -0.50 and a = 0.40. In both cases the values

predicted by the formula eq. (26) agree satisfactorily with

directly computed results. In figure 3 the variation of CL with

M. is shown, with base and calibration Mach numbers of 0.8 and

0.85, respectively. The airfoil is a NACA 64A410 section at -3.00

angle of attack. Again it can be seen that the simple formula

agrees satisfactorily with the direct calculation, except for

M = 0.75. The reason for this is that for all the other Mach

numbers the flow separates after the shock wave, and this phenom-

ena is implicitly included in the formula via the CLI and CLo. At

M, = 0.75 the flow is attached and hence the flow does not change
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smoothly from the base and calibration flows. A smooth change is

necessary for the application of the present theory.

The pressure distribution around the upper surface of two dif-

ferent airfoils calculated by the present method are shown in

figures 4-7. The first of these airfoils is the NACA64A410 sec-

tion at -3.01 angle of attack and the theory is applied for

different free-stream Mach numbers. The base and calibration

Mach numbers are 0.8 and 0.88, respectively. It can be seen from

figures 4 and 5 that the present method agrees fairly well with

direct calculations. At the higher Mach number, M. = 0.9 the

agreement at the shock is not quite satisfactory; this may be

due to the direct solutions changing character, either physically

or numerically, from the flow at the base and calibration Mach

numbers. These flows presented in these figures have shock

induced separation.

In figures 6 and 7 the pressure distributions around the

upper surface of the Korn airfoil at M, = 0.755 at different

angles of attack are shown. The base and calibration angles of

attack are a = 1.20 and a = 2.660, respectively. The agreement

between the present results and the results of direct calculations

is again satisfactory.

It should be pointed out that in the present investigation it

is necessary to take the base and calibration solutions further

apart than is the case for potential flows. This is because the

Navier-Stokes solutions are either not converged to the same

level of accuracy, or that there is some physical unsteadiness

in the solution. Both these phenomena lead to "fluctuations"

which can dominate the theoretically steady perturbation.

4. THE CORRECTION THEORY FOR NUMERICAL CALCULATIONS

The next two sections deal with the idea of correcting

approximate solutions to give solutions typical of a more accurate

theory. It is assumed that the more approximate solution can be

II



generated much more rapidly, and less expensively than an accurate

solution. Also, it is assumed that the addition of a correction

to the approximate theory does not significantly increase the

computing time. In the next section the idea of correcting

transonic small-disturbance solutions to give results typical of

Navier-Stokes solutions is investigated. In section 6 the exten-

sion of the work of reference 3, that is the correction of coarse

grid solutions to fine grids and of small-disturbance theory to

full potential theory are examined. The basic idea behind the

correction theory has appeared elsewhere 3 but is repeated here

for convenience.

Approximate equations are frequently in some sense a logical

approximation (rather than an empirical approximation) of an exact

equation. This means that the approximate equation can be formally

obtained from the exact equation by an expansion in some perturba-

tion parameter; powers of this parameter greater than some specified

power are negligible. Approximate equations can be derived by such

an expansion are referred to below as consistent approximations.

The difference between solutions of this approximate equation and

solutions of the exact equation is the error. One example of such

*a consistent approximation is given by the central finite difference

to xx Thus

x i+l - 20i + oi-l 2
XX 2Ax 2  + Ax2R , (28)

where R is the remainder of the truncated Taylor series leading

to the difference formula. Finite-difference representations of

a differential equation can be represented by an equivalent dif-

ferential equation which smoothly approaches the exact differential

equation as the mesh size is reduced to zero. For a finite mesh

size the difference between the equivalent and exact differential

equations can be represented by a perturbation equation with a

perturbation parameter characterizing the truncation error.

i1
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In general, if an approximate equation is a consistent approxi-

mation of an exact equation then the difference between the equa-

tions can be represented to a specified accuracy by a linear
perturbation equation with a perturbation parameter, c, which is

a measure of the error. If this perturbation equation is known,

it can be solved using standard methods to give a correction to

the solution of the approximate equation. The main difficulty is

in actually determining the correct form of the perturbation

equation.

It is obvious that if the exact equation can be solved then

it is not necessary to know the form of the perturbation equation

to obtain the correction since the difference between the exact

solution and the approximate solution gives the perturbation solu-

tion with the addition of (formally) negligible terms. If the

exact solution is known, of course, then there is little point in

solving for the perturbation correction. However, the perturbation

equation gives a formal measure of error c between approximate and

exact equations and is assumed to be small. If a second perturba-

tion equation that differs from the proper perturbation equation

by an error A then the formal error in using the second equation

to compute the correction is 0 (cA). A problem which has an error

described by this second perturbation equation is referred to as a
"nearby" problem. Its essential characteristics differ from the

real problem by a small amount characterized by the error A.

If

L(f) = 0 is the exact equation

L o O ) = 0 is the approximate equation

LI() = 0 is the perturbation equation

then

= o + oi + O( 2)" (29)

If a superscript A denotes the nearby problem then, if

i
I
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LA (AA) = 0

L A(A) =0
0 0

A1 (€p) = 0L1 0

Then, as before,

A A A A 20 EI + i + 0(E (30)

Subtraction of eqs. (31) and (30) then gives, to first order in c,

+ AA A A¢~ ~ = o + (¢ ) + ( _€)(31)

A.
If the nearby, approximate, solution is such that

- i <, (32a)

Then a good approximation to the exact solution is given by

4) = €o + (CA _- )
0 0

Since a basic premise of perturbation theory assumes that derivatives

of a quantity are the same order of magnitude as the quantity, an

alternative to eq. (32a) is

i 1A A « < C£ I (32b)

The "nearby" solution is defined by a solution that satisfies eqs.

(30,32). In particular applications it is assumed that the adequacy

of a nearby solution can be determined by examination of its

approximate solution in a part of the solution domain, for example,

an airfoil surface rather than the entire flow field. This assumes

that the characteristics of the complete solution can be determined

by examining only a dominant part. A discussion on the existence
of the nearby solution is given in Appendix B.
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The theory just outlined does not formally take account of

shock waves or adequately treat solutions with rapid gradients.

If either shock waves or rapid gradients are present in the solu-

tion then the strained coordinate method outlined in section 2

should be used. In this case, each of the solutions discussed

above should be written in the appropriate strained coordinates

which constrain rapid gradients to the same location.

5. CORRECTION PROCEDURES OF THE TRANSONIC
SMALL-DISTURBANCE THEORY

5.1 Theory

The transonic small-disturbance equation (TSD) can be written

in terms of a perturbation velocity potential (x,y) as

"( - M x + yy = ( + xxx (33)

where the perturbation velocity components in the x and y direc-

tions are u,v, respectively and are given by

u(Xy(x,y ) ; v(x-y) (y(x,y) (34)

The parameter "q" is a transonic parameter and within the confines

of small-disturbance theory is arbitrary. If the slope of the

airfoil is given by ys(x,±O) where "+" denotes the upper surface

and "-" sign denotes the lower surface then the thin airfoil

boundary conditions are

v(x,±O) ys (x,±0) (35)

Before proceeding with the correction analysis it is perhaps

pertinent to mention a few properties of TSD theory. The TSD

equation can be regarded as an approximation to the conservation

of mass equation; it does not really represent any of the other
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conservation laws such as energy, or momentum. The parameter q can

be derived in a number of ways. If the actual full potential equa-

tion (ref. 7) is truncated using the limiting idea of TSD theory

then q = 2. If the actual continuity equation is truncated (ref. 8)

then the term (Y+l)M2 is replaced by (3+ Y-2M2)M 2. A commonly-used

value for q is 1.75, which is Krupp scaling, and is chosen to make

TSD solutions agree with full potential theory solutions. All of

these factors reduce to the same value, (Y+1), in the transonic

limit of M 1. The main point of the brief discussion of tran-

sonic small-disturbance theory is that the theory is flexible and

can be altered within a certain range without altering the formal

accuracy.

It is interesting to briefly examine the behavior of TSD solu-

tions compared with Navier-Stokes or Euler equation solutions and

with solutions of the full potential theory. The pressure distribu-

tions over the upper surface of a Korn airfoil at M. = 0.755 and at

an angle of attack of 1.20 is shown in figure 8. It can be seen

that both the TSD and full potential equation results give a shock

location much further aft than the Euler and Navier-Stokes equation

results.

The difference in shock location between the full potential

equation result and the Euler equation result is about 80% of the

difference between the potential location and the Navier-Stokes

location. Hence, it can be argued that the cause of disagreement

in the shock location is not primarily a viscous phenomenon, but

is due to the assumption of irrotationality used in the potential

formulation. The reason for the error in shock location for the

TSD theory may be readily obtained from an examination of the shock

strengths for the TSD equation and the Euler equation for a given

pre-shock pressure. The normal shock strength variation is plotted

in figure 9 and it can be seen that, as the magnitude of the pre-

shock pressure coefficient increases, the TSD strength increasingly

becomes much larger than the corresponding Euler strength. This

greater shock strength then requires the shock on an airfoil to
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move further aft in order to accommodate it, in comparison to the

weaker Euler equation shock. The Navier-Stokes shock strength is

similar to the Euler strength. If a base criterion, that is, some

Mach number and angle of attack are defined, and if these criteria

are changed slightly, it is possible that the change in shock

location for the TSD solution will be considerably larger than

the change in an Euler equation solution. This implies that,

while at the reference station the difference in shock location

between Euler and TSD solutions may be small, the difference in

the rate of change of shock location for both solutions is not

small. This type of behavior can raise problems in a perturbation

analysis, such as the present work, since perturbation theory

usually requires that not only are certain quantities small, but

that their rates of change are of comparable magnitude. Accordingly,

this problem has been addressed in the present work.

The basic idea of the correction theory has been outlined

earlier in section 4. In the present case the solution to be

corrected is a TSD solution and correction is obtained from a

Navier-Stokes solution. From the above discussion it is apparent

that if the TSD solution to be corrected differs significantly in

shock strength from the "near-by" solution used to compute the

correction, then the new shock location will be considerably in

error, even when the correction for viscous effects is used. As

noted earlier, the TSD equation has a built-in flexibility in

which the transonic parameter can be varied. It is possible to

choose this parameter to alter the shock strength or any other

flow variable to agree with some datum value. It is assumed here

that the error in shock location between a TSD solution and a

Navier-Stokes solution is solely due to the different shock

strengths. Accordingly, the TSD parameter is chosen such that,

for a given pre-shock pressure, the difference between the TSD

shock strength and the Euler equation shock strength is the same

as in the near-by case used to compute the correction. The means

of accomplishing this device is as follows.

6,
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For the near-by problem let the subscript o denote a TSD solu-

tion for some value of the transonic parameter q, and the subscript

1 denote another TSD solution for a second value of the transonic

parameter. The subscript 2 denote a Navier-Stokes solution of the

near-by problem. Finally, a subscript 3 denotes the TSD solution

to be corrected. If a denotes the shock strength this application

of the usual form of the correction theory will give a new shock
strength aN where

a =03 + X1o 2 -o) (36)

where

--a= (37)

This may not give the correct shock strength, and hence loca-

tion, and so a modified equation for the shock strength, within

the realm of small-disturbance theory, is used, namely

= 03 + X(c2 - 0o) + 1- 38)

The parameter c is found by ensuring that

a-03 - X( 1 -a ) = - (39)
3o 2 0

Since 0 - is small and since the "near-by" solution is by

definition close to the solution to be corrected this device is

equivalent to tuning the small-disturbance theory to get approxi-

mately the correct shock jump. In eq. (39) the shock strength a

is determined at Cp, the TSD pre-shock pressure coefficient, by

the relation

a = .Y- + 3(M) 2  (40)
Y+I 1YM 2 3

where MB is the free-stream Mach number and M+ is the pre-shock

Mach number given by
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1 2 + (Y-)M 2
i (+)2 1

---+ 2 (41)

(2 1N2C+  + 1

A similar relation holds for a The TSD strength is given by

a 0  -2(C+ -C (42)
p P0  p0

where
2

-2 (l- M 2)
p0  Y+l M2

0

A similar relation holds for a., 03'

Having obtained e, the final value for the pressure coeffi-

cient on the airfoil surface is given by

( =C P(x 3 )+ A(Cp2 ( 2 ) -C (x)]

+ cAC p](x) - CPO (x')] (43)

where

x = 3 + x 2 - X' + E (x I - x') (44)

and
x x' + 6x x l(x')

* x' + X2x(x') (45)

x 3 =x' + 6xs3xl(W)

where 6xsl, 6xS 2, 6xs3 are the amounts by which the shock wave

moves for each of the solutions, relative to the base solution

I
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2 + (Y-I)M
2

(M+) - 2 (41)

(__ M2C +  + I Y-1
2 P3

A similar relation holds for a The TSD strength is given by

+ *

o -2(c o -cC o) (42)

where
2

-2 (l- M 2 )
PO Y+ M 2

0

A similar relation holds for all 3*

Having obtained c, the final value for the pressure coeffi-

cient on the airfoil surface is given by

C p(x) = CP3(X 3 ) + X[CP2(x 2 ) _ CPO X)

+ CX[C pl(x) - CPO (x')] (43)

where

x = x 3 +x 2 - x' + E(x 1 - x') (44)

and
x= x' + xl xl (x')

x 2 = x' + 6xsx l (x') (45)

x 3 = x' + 6xs xl(x')

where 6xsl, 6Xs 2, 6Xs3 are the amounts by which the shock wave

moves for each of the solutions, relative to the base solution

I
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Cp o (x'). (Note: The above idea of a "self tuning" transonic theory

is of use in its own right. A short paper on this subject is

attached as Appendix C.)

5.2 Discussion of Results

Several examples of the correction technique have been com-

puted using both Euler equations and the transonic small distur-

bance equation as a base. With the exception of the result shown

in figure 10, when the Navier-Stokes solver of Steger (ref. 6) is

used, the Navier-Stokes and Euler equation solver used is that of

Deiwert (refs. 9 and 10). An earlier example for a NACA64A410

airfoil at a = 0 and M = 0.8 is shown again in figure 10. The

basic calculation is an Euler equation solution and is corrected

for viscous effects from a near-by solution at the same. angle of

attack and M = 0.82. A similar correction for a Korn airfoil at

M = 0.755 and a = 2.660 is shown in figure 11, where the near-by

solution is at the same Mach number and a = 1.20. Both these

examples have attached flow in the near-by solution but the second

example has mildly separated flow in the test case. It can be

inferred from these examples that the correction technique does

work when Euler equation solutions are corrected. It is also

apparent that the error between the Euler equation solution and

the Navier-Stokes equation solution is not great and that these

examples are perhaps not a good test of the method. Furthermore,

the computation time of the Euler solver is about half that of the

Navier-Stokes solver and the prospective overall savings in compu-

tation cost is not as dramatic as would be the case of correcting

TSD equation solutions. Accordingly, most of the effort was put

into investigating the correction procedure for the TSD equations.

In figure 12 the pressure distribution around a Korn airfoil

at M. = 0.755 and a = 1.20 is shown. The base result is a TSD

calculation using Spreiter scaling and the correction is computed

for the same airfoil, at the same Mach number, with a = 1.70. In

figure 13 the pressure distribution around the Korn airfoil at
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14, 0.755 at a 2.660 is shown. The near-by solution is the same

as in the previous example. It may be seen that for both these

examples that the corrected result is fairly satisfactory although

the shock location is not quite right. However, the results are

a considerable improvement on the uncorrected TSD solution using

Spreiter scaling and a greater improvement over those computed with

Krupp scaling. It should be noted here that the present method

effectively chooses its own transonic scaling through the use of

eq. (35). It is interesting to investigate what effect the uz'

of eq. (35) has on the solution. Hence, the preceding case was

computed without the use of the shock strength scaling correction

and the result shown in figure 14. It can be seen that the shock

strength correction is indeed an essential part of the theory.

The previous example is one primarily of attached flow. An

attempt is made here to try to compute a separated flow example.

Although separation is really an unsteady process, the results used

here are computed using a steady version of Deiwert's Navier-Stokes

solver. The flow around an 18% thick biconvex airfoil at a = 00

and M = 0.775 is shown in figure 15. The near-by solution is the

same airfoil at the same angle of attack but at M. = 0.79. The

agreement between the corrected result and the direct result is

fairly good although the pressure in the separation region is too

high. However, the corrected result is again a considerably

improvement over the TSD solution. It is worthwhile noting that

the turbulence model had to be the same both for the near-by case

and for the direct comparison computation; different turbulence

models can produce considerably different results.

It is one of the implications of the present method that the

near-by solution need not be for the same airfoil on the test case

only that its basic characteristics, i.e., rapid gradients should

be similar. Accordingly, an example for a NACA0012 airfoil at
= 00 and M, = 0.8 was computed using the correction obtained for

the upper surface of the Korn airfoil at M = 0.755 and a = 1.20.
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The resulting pressure distribution, shown in figure 16 agrees

surprisingly well with the direct result. The NACA0012 result

is mildly unsteady and the range of unsteadiness is indicated by

the symbols on the figure. An attempt was made to use the

correction obtained for a NACA64A410 airfoil at M = 0.8 and
= -3.0* for the biconvex airfoil discussed above. This result

is shown in figure 17 and it can be seen that although the use

of the correction procedure upgrades the TSD solution, the overall

improvement is not really satisfactory. The main reason for the

error in the pressure in the separation region seems to be that

the inviscid TSD solution for the NACA64A410 airfoil does not have

as large a pressure gradient at the trailing edge region as the

biconvex airfoil solution. Incidently, it should be noted that

the examples shown in figures 12 and 13 are formally beyond the

bounds of small disturbance theory.

In general then it appears that the correction theory works

for correcting Euler equation solutions and for TSD equation solu-

tions for attached flow. The shock locations can be in error and

this may be due to the extreme nature of some of the examples. It

also appears that the use of a different airfoil for the correction

computation can work although in extreme cases like that shown in

figure 17 the improvement may be minimal. Also, from the one

example computed, it seems as if massively separated flows can

be computed although more work is required to determine the range

of applicable "near-by" solutions.

Most of the examples discussed above are fairly extreme in

their degree of flow complexity. One of the difficulties, in

abortive attempts to compute the flow over the NACA64A410 airfoil

at a = -3.0* and the Mach numbers used in figures 4 and 5, is that

the TSD solution gives a shock location at the trailing edge even

for quite high values of the transonic parameter, thus destroying

any chance of using the shock location correction of eq. (35).

The overall conclusion reached from the small range of examples

t I.
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computed is that the correction theory does appear to work, but

that a much greater range of examples both less extreme than the

present ones and with massive separation need to be investigated.

A major difficulty in implementing the suggestion economically is

to predict in advance what kind of flow a Navier-Stokes solution

will exhibit. A further point that should be investigated is

some means (probably semi-empirical) of identifying when a

separated or attached flow correction should be used.

6. THE CORRECTION THEORY IN THREE-DIMENSIONS

6.1 General Comments

The extension of the mathematical perturbation theory to three

dimensions is a straightforward development of the theory described

in section 4. The correction for a given problem is obtained by

computing one exact and one approximate solution and taking the

difference. The strained coordinate method is used to treat shock

waves and any rapid gradients in the flow. The only fundamental

difference between two and three dimensional applications of the

theory is that in three dimensions provision has to be made for a

spanwise straining to treat possible shock intersection points.

The examples considered in the present investigation all con-

cerned the ONERA M6 wing. It is obviously desirable to treat the

theory over a wide range of wings, but the relative unavailability

of wing input data and shortage of time inhibited the use of wings

other than the M6 wing as test cases. However, the pressure dis-

tribution around this wing at typical transonic speeds is fairly

complex and usually contains two shock waves intersecting inboard

of the wing tip, together with a large pressure gradient in the

vicinity of the leading edge. In the test cases various combina-

tions of angle of attack and wing twist were used to try to produce

a relatively wide range of perturbations.

i
IIi
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An important decision in the use of the theory is to determine

the number and location of the straining points. A typical section L
pressure distribution for the M6 wing is shown in figure 18. It

can be seen that the leading edge shock wave is weak and is con-

siderably smeared by the finite-difference schemes; this can cause

difficulties in identification. Consequently it was decided to

simply treat the leading edge region as a region of high gradients

and to pick some identifier (not necessarily the shock) to hold

invariant. The ultimate choice is the location of the bottom of

the first compression gradient (point A in figure 18). The other

points held invariant in the straining functions are the beginning

and end of the capture region of the strong aft shock, points B, C,

respectively in figure 18. The leading and trailing edges are also

held invariant. In addition to this section data a shock inter-

section point on the span is also held invariant. It should be

noted that the solution accuracy is unchanged if a previously

specified rapid gradient does not exist at some straining point,

since the straining does not degrade a normally valid or accurate

perturbation. One problem that arises in a diverse straining,

such as the one necessary in the present problem, is that the usual

cubic straining function used in section 3 can give strained coordi-

nates that tie off the wing. In order to remove this tendency a

piecewise version of the linear straining given in reference 2 is

used. Fo a chord length of unity, the three straining points A,

B, C, the straining function is

i( ,0) = V + ' 6 CAH(E- ') + -

x H(E'l H(-' + l)(-)(-)(6

× + (46)
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where H(E) is the step function, and 6A, 6EB, and 6E are the

perturbations in the points F, ' '"

This straining function is used in the computation of all the

test cases.

6.2 Discussion of Results

The correction for all the examples is taken from various

computations of the ONERA M6 wing at M. = 0.84 and a = 3.060

and zero twist angle. Both full potential calculations, using

Jameson's finite volume method (ref. 11), and modified small-

disturbance calculations, using a variant of the Bailey-Ballhaus

(ref. 12) code are performed. Calculations are carried out

relatively coarse and fine grids. The type and magnitudes of

errors involved in the various approximations are indicated in

figure 19. The span stations n are such that n = 0 denotes the
wing root and n = 1 denotes the wing tip. As pointed out in

section 4, the main criteria for both correction results and the

approximate or coarse grid results is that they must contain all

of the essential features of the flow. For example, in problems

of the type sketched in figure 18, a coarse grid solution must

capture the leading edge compression in an adequate fashion other-

wise the location of the forward straining point cannot be found.

Another interesting variation of the criteria for validity is that

the convergence level for all solutions on the same grid must be

the same. If the convergence level (and hence the truncation error)

is different for different cases, then the equivalent perturbation

equation for the correction is not the same, and the present

correction technique is invalid. It is possible however to

envisage a correction which would treat different convergence

levels.

The first two examples, shown in figures 20 and 21, indicate

the application of the correction technique for grid size. The

I
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approximate solutions are obtained using the finite-volume method

(ref. 11) and are on a grid of dimensions 80x8x16; the fine grid

has dimensions of 160xl6x32. The results for M.= 0.84 and a = 3.06

are shown in figure 20 for various span stations r and it can be

seen that the agreement of the present method with direct calcula-

tions is fairly good. In figure 21 the pressure distribution

around the upper surface of the M6 wing at M = 0.84, a = 3.06

and with 3.00 of wing twist. Again it can be seen that the agree-

ment between the corrected solutions and the directly calculated

solutions is adequate.

In figure 22 and figure 23 the corrections for the use of the

TSD equation is shown. The TSD solution uses the grid embedding

technique of Boppe. In figure 22 the pressure distribution for

M. = 0.84 and a = 3.06 is shown, and in figure 23 the pressure

distribution for M = 0.84, a = 4.0* and 1.50 of twist is shown.

In both cases the agreement with direct calculations is adequate.

Finally, in figure 24 and figure 25, the correction for grid

size and the use of the TSD equation is investigated. The TSD

solutions are computed on a grid with 31 streamwise points and the

full potential equation on the grid of 160 16 32 as before. In

figure 24 the pressure distribution for M = 0.84, a = 3.06 is

shown and it can be seen that the agreement with the direct calcu-

lation is not really adequate away from the wing root. This is

almost certainly due to the inability of the coarse grid TSD

solution to adequately represent a main feature of the final

solution, in this case the "bulge" in the pressure distribution

in the region of the leading edge recompression. It should be

noted, however, that the present technique still upgrades the

solution, especially the shock location. In figure 25 the pressure

distribution for a = 4.00 and 1.50 of twist is shown. It can be

seen that these corrected results compare fairly well with the

results of direct calculations.

In summary then, the correction technique derived for two-

dimensional flows in earlier reports does appear to work in
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three-dimensions although care must be exercised in the choice of

the grid size. A major criterion of the work is that only one

wing, the ONERA M6 wing, is used in the tests. The reason is

given elsewhere, but the method should be more comprehensively

tested for other wings. A second point is that the computer code

used in the present research is not entirely automatic. A future

code should have an automatic identification method for the

straining points.

7. CONCLUDING REMARKS

The main object of the present work is to extend some recent

development in perturbation theories of transonic flow. One topic

is the extension of the physical perturbation theory to treat

solutions of the Navier-Stokes equation. A second topic is the

investigation into the possibility of correcting lower grade

inviscid solutions for viscous effects using the mathematical

perturbation theory. Thirdly, the extension of the mathematical

perturbation theory for potential flows to three dimensions is

considered. The extension of the physical perturbation theory to

solutions of the Navier-Stokes equations is straightforward, the

only additional fact to appear is that the necessary base and

calibration solutions should not be too close together, otherwise

the perturbation quantities can be seriously degraded by the

numerical error in the solution.

Application of the correction technique to upgrade potential

equation solutions to include viscous effects introduced some

interesting problems. The main difficulty proved to be due to

the fact that, for relatively strong shock waves, the potential

theories give shock locations that are much further aft than those

predicted by the Euler or Navier-Stokes equations. This raised

problems in the application of the concept of near-by solutions,

since the sensitivity of some of the examples to small geometry

changes could allow a flow change from one with a relatively weak

shock to one with a strong shock. This led to the necessity for

I
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a correction for the purely inviscid errors due to the use of the

potential equation rather than the Euler equations. Examples

computed with the subsequent correction theory compare adequately

with direct calculations.

The extension of the mathematical correction theory to three-

dimensions is a straightforward development of the two-dimensional

theory. Within certain limits the perturbation method appears

satisfactory. However, in all of the topics discussed above, it

is desirable that a more comprehensive testing procedure be per-

formed over a wider range of airfoils and wings in order to assess

the range of applicability of the theories.
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TABLE 1.- VARIATION OF a AND WITH MACIH NUMBER

0U
fi h

S )TSD ( NAVIER-STOKES TSD NAVIER-STOKES U
0.82 0.622 -0.0753 0.618 0.678

0.85 1.9787 -0.178 1.965 1.609

0.87 3.3502 -0.242 3.327 2.176

(a) (0 TSD = 1.007; (0 NAVIER-STOKES 0.111

M o = 0.8, M 1  0.83

(E)TSD (C)NAVIER-STOKES 0 TSD NAVIER-STOKES

0.82 0.622 -0.0753 0.314 0.422

0.84 1.454 -0.145 0.735 0.814

0.87 3.3502 -0.242 1.693 1.352

(b) (eo) TSD = 1.979; (c 0NAVIER-STOKES - -0.178

MO  0.8, M 1 = 0.85

U
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-39-

-Estimated

C.L JX Navier.-Stokes

0. 3

0.2

\~Base

0.1

0.8 0.85 0.9 0
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Figure 3. - Variation of CL With Moo
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-- Direct calculation
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Figure 4.- Pressure distribution around the upper
surface of a NACA64A410; M = 0.85, a = -3.0. I
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Cp Calibration solution
(M = 0.88)
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Figure 5.- Pressure distribution around the upper
surface of NACA64A410 airfoil; M., = 0.9, a -- 3.00 .
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- Direct calculation
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Figure 6.- Pressure distribution around the upper surface
of Korn airfoil; M~ 0. 755, u = 1.70.
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Figure 8.- Pressure distribution over the uipper surface
of a Korn airfoil; m. = 0.75, a = 1.20.



-45-

2.0

%//
, /TSD (Spreiter)

1.5

/ Euler

1.0

/
0.5 /  1 !

/0 / -1.0 -1.2 -1.4 -1.6 -1.8 C +

/ p

0

Figure 9.- Variation of shock strength with pre-shock
pressure. (M.o = 0.755)
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-Euler corrected
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Figure 10.- Pressure distribution around NACA64A41o airfoil;
mo= 0. .8, a = 0 0.1
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Figure ll.- Pressure distribution around the upper surface

of a Korn airfoil; M = 0.755, a = 2.66.
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Navier-Stokes solution

---. Uncorrected TSD solution

Q Corrected TSD solution

C
p
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0
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Figure 12.- Pressure distribution around the upper surface
of a Korn airfoil; M = 0.755, a = 1.20.
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C
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I1.0
I -Navier-Stokes solution

L -Uncorrected TSD0
~j9 0Corrected TSD

(nearby solution at

-0.5 C .,7 0

0

0.5L

Figure 13.- Pressure distribution around the uppetr fc
of a Korn airfoil; M. 0.755, CX 2.66
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Navier-Stokes solution

Uncorrected TSD

Q Partly corrected TSDCIp

-i. 5 -- U
- O I
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.50

,6kboo ooo 0 00
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O.. 4(9 . x.

III
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K-

0
0.5 1.0 x

C

Figure 14.- Pressure distribution around the upper surface
of a Korn airfoil; M. 0. 755, Ct 2.66
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I Navier-Stokes solution
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Uncorrected TSD solution

Corrected TSD solution

SNavier-Stokes solution

C
p

-1.0

-0.

0

0.51.

0.5

Figure 16.- Pressure distribution arounda NACAO0l2
airfoil; M. = 0 .8 , u 00.
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- I Navier-Stokes solution
--- Uncorrected small

disturbance

0 Corrected small
disturbance

C

* 0
-1.2 *

-0.8

/00

-0.4

0c

08Figure 17.- Pressure distribution around a 18-percent
biconvex airfoil; M.0 0.775, a =00

.
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C
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'i -1.01
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C

0.5 1.0 x
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0.51

Figure 18.- Sketch of typical pressure distribution over
the upper surface of the ONERA M6 wing.
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"= 0.2

Cp

-Fine grid

0 Coarse grid (corrected)

0J Coarse grid

0 0.5 1.0 x,_
c i

0.5 L

(b)

Figure 20.- Continued.
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TI 0. 4
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Figure 20.- Continued.
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- Fine grid

C) Coarse grid (corrected)P 0 Coarse grid
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Figure 20.- Concluded.
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-)0. 0

Cp - Fine grid

0 Coarse grid (corrected)-

i - Coarse grid

-0.5

0 0.5 1.0

0U

0.5

(a)

Figure 21.- Pressure distribution over the upper surface
of the ONERA 176 wing; M = 0.84, a. = 3.06, Otwist =30.

(grid correction, fuhi potential equation).
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0 Coarse grid (corrected)
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Figure 21.- Continued.
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T= 0.4

C p
-Fine grid

- Coarse grid (corrected)

[] Coarse grid
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0 0
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Figure 21.- Continued.
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7= 0.6

-Fine grid

Cp Q Coarse grid (corrected)
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Figure 21.- Concluded.
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)= 0.0

- Full potential

- - - TSD

C CP -k-0- TSD (corrected)
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(a)

Figure 22.- Pressure distribution around the upper surface
of ONERA M6 wing; M = 0.84, a = 3.060
(TSD/full potential equation correction).
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T= 0. 35 -4

Full potential

CPTSD [4

-- TSD (corrected)

F J

-1.2
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-0.2

C 0
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(b)

Figure 22.- Continued.
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Figure 22.- Concluded.
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-Full potential result
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Figure 23.- Pressure distribution over the upper surface
of the ONERA M6 wing; a 4, 0 Otwist = 1.50

(TSD/full potential equation correction)
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Figure 23.- Continued.
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Figure 23.- Concluded.
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Figure 24.- Pressure distribution over the upper surface
of the ONERA M6 wing; M = 0.84, a = 3.06

(TSD coarse grid/ful1 potential
equation correction).
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Figure 24.- Continued.
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Figure 24.- Concluded.
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Figure 25.- Pressure distribution over the upper surface ]
of the ONERA M6 wing; M = 0.84, Ct = 40, etwist = 1.50
(TSD coarse grid/full potential equation correction).
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Figure 25.- Continued.
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APPENDIX A

OBSERVATIONS ON THE STPAINED COORDINATE

METHOD FOR TRANSONIC FLOWS

By David Nixon

Nielsen Engineering & Research, Inc.

Mountain View, California

Introduction

1,2
Recently papers concerning a strained coordinate method for

discontinuous transonic flow problems have appeared in the

literature. In particular, the application of this technique for a

linear interpolation or extrapolation between two known results

has raised some questions regarding the relationship of the strained

coordinate technique to normal interpolation procedures. Some

confusion also seems to have occurred regarding the treatment of

3the Oswatitsch-Zierep "shock foot singularity." It is the purpose

of this note to examine these questions and (hopefully) finally

resolve them.

Analysis

In figure 1 a typical velocity distribution, for transonic

flow, u(x), is sketched. This is the curve ABCD. A shock

wave is present, denoted by the line BC, with the shock foot singu-au
larity at the point C. At C the derivative is logarithmicallyax
singular. A second transonic flow related by some small parameter

change to the first, is represented by the curve ABCD. The

purpose of a linear interpolation procedure is to obtain a third

Index Categories: Transonic Flow; Analytical and Numerical Methods.

Research Scientist, Associate Fellow AIAA
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solution, A B" C" D from the first two (known) solutions.

Let the difference betwecn the P-BCD and AB'C'D solution be

characterized by the small parameter E and the difference between

AB"C"D and ABCD characterized by c. The shock locations C, C', C"

are denoted by x xs, xs" In both the strained coordinate method

* and linear interpolation the new shock location is

x = x' +- (x-xs ) (i)
S 0 55

Consider now the velocity distribution u(x) in the region AB where [
no discontinuities or s4ingularities appear. The strained coordinate

method gives
2

u(x) = u (x') + E [u(T-- - u W ) (2)

where u (X') refers to ABCD, ul(X) refers to AB'C'D. The physical

coordinate is x' and

x = x' + 6xX l (x') (3)

x x' + --- 6xsx (X') (4)
0

where xl(X,) - x'(l - x') (5xsx - xs  (5)
X (1 - x'T)

and 6x =x -x
S s s

A normal linear interpolation procedure gives

u(x) = u0 (x) + - [u 1 (x) - u0 W) (6)
0
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Now from equations (3) and (4)

x Ix' + -- 6 (x )
C0 si

C
x x + (E- - 1) 6Xx(x')

0

and thus, by a Taylor series expansion,

u°(x) u°(x') + 6o xI + "'"
0

(7)

u l (x = u I ( ) + 1 - ) 6 x(x') u +
C o S

Substitution of equation (7) into equation (6) and retaining only

linear terms in 6x and e gives

u(x) = u (x') + o1) x x W U-
0 Co a :0  slIa

+ -- [Ul(3) - U (x') (8)

If, as will be the case in region AB,

u1 _ u 0  e (9)

13 axj

then the second term on the right of equation (8) can be neglected

jand it may be seen that the straine coordinate method and linear

interpolation are equivalent. A similar equivalence occurs in theI
!
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region C'D provided the point in question is not too close to the II
ul au

singularity at C'. This would make large compared with

and would invalidate the assumption of equation (9).

Consider now interpolation or extrapolation in the region :

BB'. An extrapolation for u x') can be made using a Taylor series0
expansion about some point x' close to B. Thus

P

uo0 (x) = uo (x) + (x - x) - - +**. (10)

A similar analysis to that previously given leads to the result

u (x ) u (X ) + F-o Iu ( ) - U 0(

+ ]6x x1 W) -IU AX Vk', (11) Lp •

If a1and L-rl are sufficiently close and if Ax - 0 [6xsx (x')]
a- 1-x 1 [
p

then the third term in equation (11) is negligible and again the

linear interpolation/extrapolation is equivalent to the strained

coordinate method. A similar analysis can be applied to the region

C"C' in which case if x' is close to C' is very large andx
interpolation/extrapolation is not equivalentto the strPined ...,

Jrinate method since would not be sufficiently close to the

.,ir regular au 0 in C"C'. Indeed, it is difficult to see how

C"C' can be obtained by linear interpolation/extrapolation

• 'Uld involve an expansion through the singularity at C'.
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t is probably possible however to obtain a solution in CC' if the

shock jump relations are used at B" to get values at C" and a higher

order interpolation used in C'C".

Consider now the behavior of the strained coordinate method

at the shock foot. The behavior of the velocity at C, C' is given

by the form

u(x) = u l (x s  + a ( x - x s )Zn(x -x s )

(12)

U (x') U (x') + a X'- x s')9n(x'- x')0 0 O S

where ul(X ), Uo(x' ) are values at B' and B respectively and

l, ao are constants depending on the shock strength and the air-

foil curvature. Using the strained coordinate method, equation (2),

gives for values just downstream of C"

u(x) = u (x ) + (x'- x')Pn(x - x')
O S_ S S

£ - Uo(Xs ) + al(X -X n(x - x ) (13)

- a (X'- xs) n(x'- xs)J

From equations (3) and (5) it can be seen that

(x - Xs) = x'- x' + 6xs(xl(X') - 1)

If (x' - X) = 6 then, using equation (5),

(K - X) = 611 + a(x')] (14)

where
6x (1 - x' - x')

a (x') = s
x( - xs) (15)
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Substitution of equation (14) into equation (13) gives

u(x) = uo(Xs ) + a6zn6 + -s- ( (x) - Uo(xs)

+ a 6[1 + a(x')In6[1 + a(x')] - co6Zn (16)

Since 6x is assumed smalls

Zn6[l + a(x')] Zn6

Then

u(x) = (Xs,) + [u( - u (X

+ ae + [CO {l[l + a(x')] - a °6fn6 (17)

The form of the singular part of u(x) at C" can be found by the

above analysis to be

at6) + a a(x')]en 6[1 + a a(x')- o o

where a2 is some constant.

Since a(x') is small this can be reduced to

a2 [6n6 + (6tn6) -L a(x')
2Thu0

Thus 6en1 + - -- a (x I]Zn Sji + -E-a (x)f [a (x

C0 C E
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Substitution in equation (13) gives

W_ 
( a) 

+ - u
0

(x) 
au

(i- o)is small and hence the term (1 - can
0 0

be neglected in equation(18). It can then be seen that the strained

coordinate system~ not only transfers the shock to its correct loca-

tion, from equation (1), but also introduces the correct shock foot
singularity with a strength [ + a-- (al - a))] obtained by linear

0
interpolation of the strengths at C, C' Thus in the strained

coordinate method the treatment of the shock foot singularity is

Sconsistent with the treatment of the smoother parts of the solution.

Concl]us ions

The strained coordinate interpolation method used for transonic

flows has been compared with normal interpolation/extrapolation

~procedures. It is found that both methods are essentially equiva-

lent in smooth regions of the solution. However, normal linear

extrapolation does not appear to be applicable in the region just

behind a shock wave where the acceleration is. infinite. The

strained coordinate method does move the shock, and its associated

shock foot singularity to the correct location and scales the

strength of the singularity according to linear interpolation.
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APPENDIX B

COMMENTS ON THE EXISTENCE OF A "NEAR-BY" SOLUTION

In the preceding work the term "near-by solution" is used.

The definition is very loose, being simply "a solution that has

all the essential features of the basic solution." In this

appendix an attempt is made to define a near-by solution on a

quantitative basis.

Consider a differential operator, L( ) where

L(%) = 0 (1)

Let an approximate representation of the system described by

equation (1) be given by

L( J + cL(10) = 0 (2)

where c is a measure of the difference between approximate and

exact solutions. is the solution to the approximate equation

L 2 4) = 0 (3)

and LI( ) is a differential operator. If

= 4 + EV' (4)

where c is a small parameter, then

L(¢) = L(p) + + ... = 0 (5)

where L( ) is a linear differential operator whose coefficients

may be functions of , and 4' is the correction to 4.

' - .. . . . . . . .. . .. . .' ... .7 
-

. ... . .. . . .- " ., r . . . , .. . ...
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If equation (5) is subtracted from equation (2), then an

expression for the correction is

L( ') = Ll (4) (6)

Now let there be two solutions, a base solution, denoted by the

subscript 1, and a near-by solution, denoted by the subscript 2.

Thus, from equation (6)

L = Ll(p 1 )

(7)

L 2 (42 ) = L1 ( 2 )

Subtraction of these equations give

1(OP - L2 (O) = Ll( ,) - L1 ( 2) (8)

Now generally in transonic flow problems L( ) is a mixture of

first and second derivatives (no cross derivatives). Let L(

be given by

( 9) 2 +2 ++ (9)
+ s(c%) -- + y(%) + -

ax 2  ay2axa

The boundary condition for the perturbation equation, equation

(6), is given by

4 = B on some boundary C (10)

The precise location of the boundary C may not be too critical;

i.e., a mean surface boundary condition could be used.
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Equations (8) and (9) can be combined to give

+)y + Yl(x x +i(i 2XX yy 1Y

a= (2-U e1)xx + (2- Y1)'2yy + (Y 2 - Yl)2x

+ ( 6 2- 6 1)2y + Ll( 1 ) - LI(4 2 ) (11)

with boundary conditions

-~ ( )y B 2 - B (12)y 2 1

on some mean of ClC 2

If

Ju c- a2 1 " 1 1

1i - 21 " Ii

yi- Y2 1 << lyII
(13)

16i - 621 " 16 i

BI - B2 1 " Bi J

1IL i (4) - L1 ( 2 )1I « 1LT,(P 1)II

where 1 1 is some suitable norm for L1 ( ), then equations

(11) and (12) reduce to

a1i) + yixy + yii + 61 4 0 (14)xx

o 0 (15)
y

where
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The solution to equations (14) and (15) is

= 0

or
- *= 0

Formally this implies

~i4 - «< 1'<I1

which in turn implies that the correction 4' can be used for

the problem denoted by subscript 2 provided in equation (13)

is satisfied.

Example:

Consider the problem of truncation error in solutions of

the TSD equation

B 2 Bxx + = x~xx (16)

In this case

2|
a B2 -Ox

'' 
= x (17)

6= 0

LI() = Ax 2 (B2  +x) 4 + Ay2 a4
H e-e4 t c4

Hence, the correction procedure is valid if



* -5-

B - - - B2 +« -

lx - x « i

4- 4- 
2 - a 1  - a02 1 2(B 4(B (B1 X 2axx ax 411 x 3

4-, 4- -

ay4 4 4 (18)ay ay Dy

The above formula are dependent on large gradients either

vanishing or being constrained to the same location. The

strained coordinate method takes account of the latter problem.

In practical applications it is assumed that the error

bounds, equation (13), can be deduced from values on the air-

foil surface. This does not seem unreasonable.

Li



APPENDIX C

TRANSONIC SMALL DISTURBANCE THEORY WITH

STRONG SHOCK WAVES

David Nixon*
Nielsen Engineering & Research, Inc.

Introduction

The most common methods of predicting aerodynamic character-

istics at transonic speeds are either the Transonic Small

Disturbance (TSD) theory1 or the Full Potential Equation theory 2

3(FPE). The more accurate Euler equation solutions are expensive

to obtain although for flows with strong shock waves such solu-

tions are essential. The FPE theory requires that the flow is

irrotational and treats the wing boundary conditions exactly

(numerically). The TSD theory is an approximation to the FPE

theory. One advantage of the TSD theory is the flexibility in

deriving the approximate equation. This flexibility is generally

utilized by a choice of a transonic scale parameter. The basic

assumption of irrotationality in both these theories is only

valid when the flow is shock free or contains only weak shocks.

Both TSD and FPE solutions are in satisfactory agreement with

realistic Euler equation solutions provided that the basic

restriction to weak shock waves is not violated. The thin

wing boundary conditions can also introduce errors into the TSD

Index Categories: Transonic Flow; Analytical and Numerical Methods.

Research Scientist, Associate Fellow AIAA.
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solutions. If the flow has strong shock waves, however, then

there is considerable disagreement among all three theories.

Generally the predicted shock locations for the potential theories

are much further aft than for the Euler equations. The problem

addressed in this paper is to examine the error in the shock

location in the TSD theory in two-dimensional flow and to

derive a correction procedure within the confines of small

disturbance theory. The basic hypothesis of the present theory

is that the error in shock location is primarily due to the

stronger shock strength predicted by TSD theory compared to that

of the Euler equations. The technique uses two TSD solu-

tions with different scaling parameters and an interpolation

scheme derived for discountinuous transonic flows to give a

corrected shock strength.

Analysis

The TSD equation for the perturbation velocity potential,

4(x,y),at a free-stream Mach number M.,is

(U - M2)4x x + 4 yy = (Y + )M ()

where y is the ratio of specific heats and q is the transonic

scaling parameter. The two most commonly used 4 values of q are

2 (Spreiter scaling) and 1.75 (Krupp scaling). The pressure

coefficient c p(X,y) is

c p(x,y) -2 4 x(X,y) (2)

WA
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Associated with Eq. (1) are the usual tangency and far field

boundary conditions. The weak shock jump conditions for Eq. (1)

are

L i( - M2- (y + l)Mq~x jx + tan El y I (3)

where l D denotes a jump through a shock wave and s is the angle

between the shock normal and the x-axis. For a shock normal Lo

the free stream the shock strength, T is defined as

C + *)

C c - =-2(C+ -C) (4)T P pP

where C C are the pressure coefficients just ahead of and
r C p

behind the shock and

-2(l - M2

Cp +M (5)
(y +I)

Consider now the Euler equation normal shock jump, cE, in

terms of M0 and C + which is given by
p

y+ e 2 + p

(I F..M..... 
.. ...+1
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where the upstream shock Mach number Me is given by

{Y
2 1) [2 + (-t - l12/ Y 2C+ + 1 - 2

e 2 p

(7)

Eqs. (4) and (6) are shown for M = 0.755 in figure 1 and

it can be seen that as IC+1I increases the discrepancy between
p

0 and 0E increases. Note that different transonic scalings

not only give a different value of C but generally a different

value of C+ . Thus, for different scalings the shock strength
P

may vary considerably.

The error in the shock location in the TSD solutions seems

to be primarily due to the error in the shock strength as

exhibited in figure 1. If the TSD equation is altered, still

within it's formal accuracy bounds, such that the shock jump

approximates the Euler equation shock jump then the resulting

equation is a better compromise in representing the actual

flow. The reason for this statement is that by matching the

shock jump the new equation implicitly introduces an additional

mechanism, formally negligible, that cancels the rotationality

errors in a potential formulation.

If the correct shock strength is known and if two TSD

solutions with different scalings are also known then a TSD

solution with correct shock strength may be estimated using a

-- -- I ....... ...... .I ..... ... I , , ,, , ' .. . ... I I I II I III ~ l i" [
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linear combination of the known solutions. Thus, if and

aT 2 are the shock strengths of the TSD solutions, then a param-

eter c can be found such that

a a + C(0 - (8)E TT T
2i

where a is the estimated Euler equation shock strength. If c

is known then the pressure distribution can be found using the

strained coordinate method6 . Thus,

C (X,y) = C (X',y) + €[Cp2(,y) - Cp(X',y)] (9)

where C (X,y), C (x,y) are the pressure coefficients from the

TSD solutions and

x x + Xso x1 (x')

x = x' + E(x - x')

where Sx is the change in shock location between first andso

second TSD solutions. The function x 1 (x') is usually taken 6

to be

x(x') ( - x')
w s

*where xis the shock location for the first TSD solution.
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The main problem now is to estimate the shock strength E .

This is given by Eq. (6) if C+ is known. In TSD solutions
p

Spreiter scaling gives good agreement4 for moderately strong

shocks and Krupp scaling gives good agreement for weak shocks.

Hence it seems reasonable to take C+ to be the average of the~p

Spreiter and Krupp values of the preshock pressure coefficients.

However, the justification for this choice really lies in the

accuracy of the final results. Hence, given aE from Eqs. (6)

and (7) the surface pressures can be found from Eqs. (8), (9),

and (10).

Results

The present method was first tested for a weak shock

example, namely the flow over the NACA 64A006 airfoil at zero

angle of attack and M = 0.875, to see if the present method

would give the accurate Krupp scaling. This result is compared

to an Euler equation result7 in figure 2 and it can be seen that,

apart from the shock capture characteristics, the present

method does agree satisfactorily with both the Euler solution

and the Krupp solutions. An example for a flow with a strong

shock is shown in figure 3. In figure 3 the flow around a

Korn airfoil at M = 0.755 and 1.70 angle of attack is compared
08

to an Euler equation8 solution and it can be seen that the

agreement of the shock location predicted by the present method

is satisfactory, although there is an error in the leading edge,

which is almost certainly due to the use of thin airfoil boundary



conditions in the TSD theory. Incidently, if Spreiter scaling

is used, the TSD result is almost coincidental with the present

result.

Concluding Remarks

A method to effectively choose a transonic scaling to

place shock waves computed by small disturbance theory at the

location predicted by Euler equation solutions has been

developed. The technique does effectively correct the shock

location although discrepancies in the leading edge region

still persist. This is probably due to the use of thin wing

boundary conditions.
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LIST OF FIGURES

Figure 1. Variations of normal shock strength with pre-shock

pressure.

Figure 2. Pressure distribution around a NACA 64A006 airfoil;

a = 0, M = 0.875.

Figure 3. Pressure distribution around the upper surface of a

Korn airfoil; M = 0.755, a = 1.70.
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